18 research outputs found

    Frictionless Authentication Systems: Emerging Trends, Research Challenges and Opportunities

    Get PDF
    Authentication and authorization are critical security layers to protect a wide range of online systems, services and content. However, the increased prevalence of wearable and mobile devices, the expectations of a frictionless experience and the diverse user environments will challenge the way users are authenticated. Consumers demand secure and privacy-aware access from any device, whenever and wherever they are, without any obstacles. This paper reviews emerging trends and challenges with frictionless authentication systems and identifies opportunities for further research related to the enrollment of users, the usability of authentication schemes, as well as security and privacy trade-offs of mobile and wearable continuous authentication systems.Comment: published at the 11th International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2017

    A survey on physiological-signal-based security for medical devices

    Get PDF
    Implantable Medical Devices (IMDs) are used to monitor and control patients with chronic diseases. A growing number of IMDs are equipped with a wireless interface that allows non-invasive monitoring and reprogramming through an external device, also known as device programmer. However, this wireless interface also brings important security and privacy risks that may lead to remote attacks. In this domain, the use of cryptography is challenging due to the inherent tensions between security vs accessibility and security vs energy cost. A well-studied problem yet unsolved is how to establish (and manage) cryptographic keys between the device programmer and the IMD. Recent work has investigated how Physiological Signals (PS) extracted from the patient can be used for key agreement or authentication between the devices. This paper surveys some of the proposed countermeasures in the field of medical device security, with a special focus on those that use patient\u27s physiological signals for key establishment or authentication between the devices. We point out that most of the existing solutions, including those relying on PS, take assumptions that do not necessarily hold in practical scenarios. Furthermore, we show that the H2H protocol and the Biosec protocol have serious security weaknesses and design flaws which make them vulnerable to attacks. Based on our analysis, we define some of the challenges that need be addressed before adopting these solutions. Furthermore, we investigate how to use physiological-signal-based protocols in cryptography, possibly in combination with other solutions, such as pre-installed factory keys, to achieve higher security protection

    Reliability-Informed Beat Tracking of Musical Signals

    Get PDF
    Abstract—A new probabilistic framework for beat tracking of musical audio is presented. The method estimates the time between consecutive beat events and exploits both beat and non-beat information by explicitly modeling non-beat states. In addition to the beat times, a measure of the expected accuracy of the estimated beats is provided. The quality of the observations used for beat tracking is measured and the reliability of the beats is automatically calculated. A k-nearest neighbor regression algorithm is proposed to predict the accuracy of the beat estimates. The performance of the beat tracking system is statistically evaluated using a database of 222 musical signals of various genres. We show that modeling non-beat states leads to a significant increase in performance. In addition, a large experiment where the parameters of the model are automatically learned has been completed. Results show that simple approximations for the parameters of the model can be used. Furthermore, the performance of the system is compared with existing algorithms. Finally, a new perspective for beat tracking evaluation is presented. We show how reliability information can be successfully used to increase the mean performance of the proposed algorithm and discuss how far automatic beat tracking is from human tapping. Index Terms—Beat-tracking, beat quality, beat-tracking reliability, k-nearest neighbor (k-NN) regression, music signal processing. I

    Gait template protection using HMM-UBM

    No full text
    © 2018 Gesellschaft fuer Informatik. This paper presents a hidden Markov model-Universal background model gait authentication system, which is also incorporated into a template protection based on a fuzzy commitment scheme. We show that with limited enrollment data the HMM-UBM system achieves a very competitive equal error rate of ≈ 1% using one sensor. The proposed template protection scheme benefits from eigenfeatures coming from multiple Universal background model systems fused with a novel technique that minimizes the bit error rate for genuine attempts. This allows the protected system to achieve a false rejection rate below 5% with an effective key length of 64 bits.status: Published onlin

    A Systematic Comparison of Age and Gender Prediction on IMU Sensor-Based Gait Traces

    No full text
    Sensors provide the foundation of many smart applications and cyber–physical systems by measuring and processing information upon which applications can make intelligent decisions or inform their users. Inertial measurement unit (IMU) sensors—and accelerometers and gyroscopes in particular—are readily available on contemporary smartphones and wearable devices. They have been widely adopted in the area of activity recognition, with fall detection and step counting applications being prominent examples in this field. However, these sensors may also incidentally reveal sensitive information in a way that is not easily envisioned upfront by developers. Far worse, the leakage of sensitive information to third parties, such as recommender systems or targeted advertising applications, may cause privacy concerns for unsuspecting end-users. In this paper, we explore the elicitation of age and gender information from gait traces obtained from IMU sensors, and systematically compare different feature engineering and machine learning algorithms, including both traditional and deep learning methods. We describe in detail the prediction methods that our team used in the OU-ISIR Wearable Sensor-based Gait Challenge: Age and Gender (GAG 2019) at the 12th IAPR International Conference on Biometrics. In these two competitions, our team obtained the best solutions amongst all international participants, and this for both the age and gender predictions. Our research shows that it is feasible to predict age and gender with a reasonable accuracy on gait traces of just a few seconds. Furthermore, it illustrates the need to put in place adequate measures in order to mitigate unintended information leakage by abusing sensors as an unanticipated side channel for sensitive information or private traits
    corecore